Unsupervised Liver Tumor Segmentation with Pseudo Anomaly
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Q1: Should pseudo-anomalies
approximate the queries in test phase?

* There is no clear definition of what constitutes an anomaly,
there shouldn’t be any bound or limit on pseudo anomaly.

« We advocate generating a diversity of anomalies to
facilitate a model to learn the comprehensive normal
spectrum, instead of matching known abnormal patterns.
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be trained on the synthesis data” R Bt otnocseiioiooooeo . “ o

* A covariate shift is likely to exist between the synthesized
and real anomalies, according to Fig 1(C). Good-fit models
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on the pseudo-anomalies may fail to detect real anomalies. . L 3

* The mf)del optimizatign on anomaly synthesis for pseudo- Fig. 1. (A) Systematic diagram of the proposed unsupervised liver tumor segmentation
supervised segmentation should stop early to preserve the scheme. During training, synthetic abnormalities are fed to a restoration net followed by a
model’'s generalizability on queries. segmentation net. The two models are trained in two phases to avoid model overfitting

on synthesis. (B) Proposed synthesis pipeline based on Gaussian noise stretching. (C)

Liver image embedding by 2-D TSNE.
Method
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We adopted the DREAM[1] architecture and incorporated three -
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key elements: random-shape anomaly generation, two-phase \/\/v\/\/\/\/w/\/\/v
learning mechanism, and UNet reconstruction network. |
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Input: Image, Threshold . [ 0.005

Output: AnomalyMask, Label 0.70 -

T Y > o) RN . 28 T Y > s 5 : 3 " 0.30 & T T T T T T T T T 0.000 T T T T T T T T T T 0.000
NoiseImage < gaussianN oise(Image_-height, Image width) T 20 20 6o 8o 100 1o 140 100 180 200 T 20 20 6o 8o 100 Do 140 100 180 200

BlurImage - gaussianBlur(NoiseImage, kernal_size) Epochs Epochs
StretchImage < rescaleIntesity( BlurImage, (0, 255 . . .
Anomalibaak & bz-.n.a.m:zc(Stré’t(ch.zmagc, ?h.fcshozi)) Fig. 2. Evaluation performance of the segmentation network
AnomalyMask + Morph_open_close( AnomalyM ask, kernel_ellipse) reveals a tendency to overtfit ShOrﬂy after a short period of training_
if sum(AnomalyMask) > 0 then

Label + 1
else

Label + ()

Results

The pseudo anomaly synthesis is shown in Fig. 1(B) and
formulated as:

I.=(1-MH)OU+C)+M.OI, |C| € (minRange, maxRange)

where I. represents synthesized anomalies, ©® is the element-
wise multiplication, and C is randomly drawn from a Gaussian
distribution within a defined range

Two-stage Training Strategy

Due to the covariate shift of the synthesized anomalies, we
observed high perturbations in evaluation performance,
therefore, we propose to train the networks Iin two steps: As

_ L | | | Fig. 3. Qualitative results of tumor segmentation on real liver tumor
Depicted in Fig. 2(A), the reconstruction network is trained to data. I;,: Input, My, ,: segmentation mask, and M,,: Ground-Truth.

restore anomalous regions, while the segmentation network
estimates an accurate segmentation map for the anomaly.

. The reconstruction model is first trained with L, loss: Table 1. Ablation study of two-phase training (TP), pseudo anomaly
_ ~ (PA), and reconstructive network. The baseline is DRAEM model [1].
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» After freezing the well-trained generative module, Focal Loss

[2] is adopted to slightly train the segmentation model to avoid 14.75 + 14.28
bias introduced by the Covariance shift, :
v 21.31 + 12.54
N , Base
Lseg(MS — MS) — __ZZ (1 mSlJ) log(mSU) line \/ \/ 3017 i 550
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where [, is the reconstruction image, M. is the estimated v v 40.06 £ 6.85
anomaly mask, 7i;;; denotes the predicted probability of class j V4 V4 V4 53.034+1.78
at pixel i, and a;is the weight for class j.
[1] Zavrtanik, Vitjan, Matej Kristan, and Danijel SkoCaj. "Draem-a discriminatively trained reconstruction embedding for surface anomaly detection." Proceedings of the IEEE/CVF International Conference on Computer Vision. 2021. [

[2] Lin, Tsung-Yi, et al. "Focal loss for dense object detection."” Proceedings of the IEEE international conference on computer vision. 2017.



