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Motivation
Q1: Should pseudo-anomalies 
approximate the queries in test phase?
• There is no clear definition of what constitutes an anomaly,

there shouldn’t be any bound or limit on pseudo anomaly.

• We advocate generating a diversity of anomalies to
facilitate a model to learn the comprehensive normal
spectrum, instead of matching known abnormal patterns.

Q2: How should the segmentation model 
be trained on the synthesis data?
• A covariate shift is likely to exist between the synthesized

and real anomalies, according to Fig 1(C). Good-fit models
on the pseudo-anomalies may fail to detect real anomalies.

• The model optimization on anomaly synthesis for pseudo-
supervised segmentation should stop early to preserve the
model’s generalizability on queries.
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Fig. 3.  Qualitative results of tumor segmentation on real liver tumor 
data. 𝐼!": Input, 𝑀#$%: segmentation mask, and 𝑀%&: Ground-Truth.

Table 1. Ablation study of two-phase training (TP), pseudo anomaly 
(PA), and reconstructive network. The baseline is DRAEM model [1]. 

+𝑻𝑷 +𝑷𝑨 +𝑼𝑵𝒆𝒕 𝑫𝒊𝒄𝒆

Base
line

14.75 ± 14.28
✓ 21.31 ± 12.54
✓ ✓ 30.17 ± 5.50

✓ ✓ 40.06 ± 6.85
✓ ✓ ✓ 𝟓𝟑. 𝟎𝟑 ± 𝟏. 𝟕𝟖

Mask Generation

!!"#
!$"%

Reconstruction Module

Segmentation Module

Concat.

Random-Shape 
Anomaly 

Generation ⨀

⨀

+

A

B

C

Fig. 1. (A) Systematic diagram of the proposed unsupervised liver tumor segmentation
scheme. During training, synthetic abnormalities are fed to a restoration net followed by a
segmentation net. The two models are trained in two phases to avoid model overfitting
on synthesis. (B) Proposed synthesis pipeline based on Gaussian noise stretching. (C)
Liver image embedding by 2-D TSNE.

Fig. 2. Evaluation performance of the segmentation network
reveals a tendency to overfit shortly after a short period of training.

The pseudo anomaly synthesis is shown in Fig. 1(B) and
formulated as:

where 𝐼# represents synthesized anomalies, ⨀ is the element-
wise multiplication, and 𝐶 is randomly drawn from a Gaussian
distribution within a defined range

𝐼# = 1 −𝑀# ⨀ 𝐼 + 𝐶 +𝑀#⨀𝐼, 𝐶 ∈ (𝑚𝑖𝑛𝑅𝑎𝑛𝑔𝑒,𝑚𝑎𝑥𝑅𝑎𝑛𝑔𝑒)

Two-stage Training Strategy

Due to the covariate shift of the synthesized anomalies, we
observed high perturbations in evaluation performance,
therefore, we propose to train the networks in two steps: As
Depicted in Fig. 2(A), the reconstruction network is trained to
restore anomalous regions, while the segmentation network
estimates an accurate segmentation map for the anomaly.

• The reconstruction model is first trained with 𝐿' loss:

𝐿($)(𝐼# − 6𝐼#) = |𝐼# − 6𝐼#|

• After freezing the well-trained generative module, Focal Loss
[2] is adopted to slightly train the segmentation model to avoid
bias introduced by the covariance shift, :
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𝛼,(1 − <𝑚#,!,)/log( <𝑚#,!,)

where 6𝐼# is the reconstruction image, 8𝑀# is the estimated
anomaly mask, <𝑚#,!, denotes the predicted probability of class 𝑗
at pixel 𝑖, and 𝛼, is the weight for class 𝑗.

We adopted the DREAM[1] architecture and incorporated three
key elements: random-shape anomaly generation, two-phase
learning mechanism, and UNet reconstruction network.
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