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• Background: Anisotropic magnetic resonance (MR) volumes are 
common clinically, but isotropic volumes are often needed for automated 
neuroimage processing 

• Challenge: Super-resolution (SR) techniques estimate high-resolution 
(HR) volumes from low-resolution (LR) ones, but deep learning methods 
are prone to domain shift and existing methods do not model slice gaps 

• Solution: We propose a zero-shot self-supervised approach for super-
resolution which models slice gap, building on a previous approach 
SMORE[1]

➢ Downstream Performance: Dice Similarity Coefficient
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T2-FLAIR Experiment

➢ Results

➢ Dataset
• 30 T2-FLAIR volumes from the 3D-MR-MS[3] dataset 
• Downstream task: MS lesion segmentation with a pre-trained U-net

• Zero-shot self-supervised super-resolution 
• Better performance with WDSR, residual connection 
• Models scenario where slice thickness is not equal to slice separation 
• Strong performance on segmentation downstream task
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➢ Dataset
• 50 T1-weighted volumes from the OASIS3[2] dataset 
• Simulated at common clinical resolutions 
• Downstream task: Brain region segmentation with SLANT[4]

➢ Qualitative Results

➢ Quantitative Results
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