Paired MR-to-sCT Translation using Conditional GANs An Application to MR-guided Radiotherapy

30

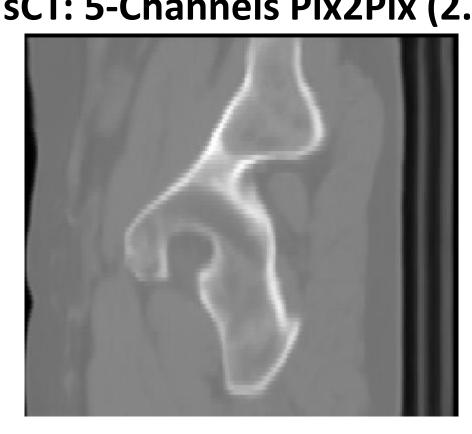
60

Alexandra Alain-Beaudoin, Laurence Savard and Silvain Bériault Advanced Development Engineering, Elekta Ltd., Montréal, Canada

Abstract

We present a method for MR-to-sCT image translation using paired training data. The method is based on the Pix2Pix conditional GAN architecture. A multi-channel (2.5D) approach is used to improve translation results thru-plane in comparison to applying a 2D model independently on each slice, while keeping inference time small in comparison to a full 3D approach. Separate models were trained for both brain (T1-weighted) and pelvis (T1- and T2weighted) using already paired data as provided by SynthRAD2023 challenge. Models were validated using 60 validation subjects provided by the challenge. Image similarity metrics obtained during the validation phase are: mean absolute error (MAE) of 64.27 ± 14.15, peak signal-to-noise ratio (PSNR) of 28.64 \pm 1.77, structure similarity index (SSIM) of 0.872 \pm 0.032. New: Results of the test phase have been added to this poster. Image similarity metrics are comparable to those of validation phase (no degradation). Dosimetric evaluation results are also provided.

Method 2.5D Pix2Pix **Real CT slices Real MR slices Synth CT slices** Discriminator — fake Discriminator Real MR slices → real **Real MR slices** (ResNet) (ResNet)


Main Hyperparameters

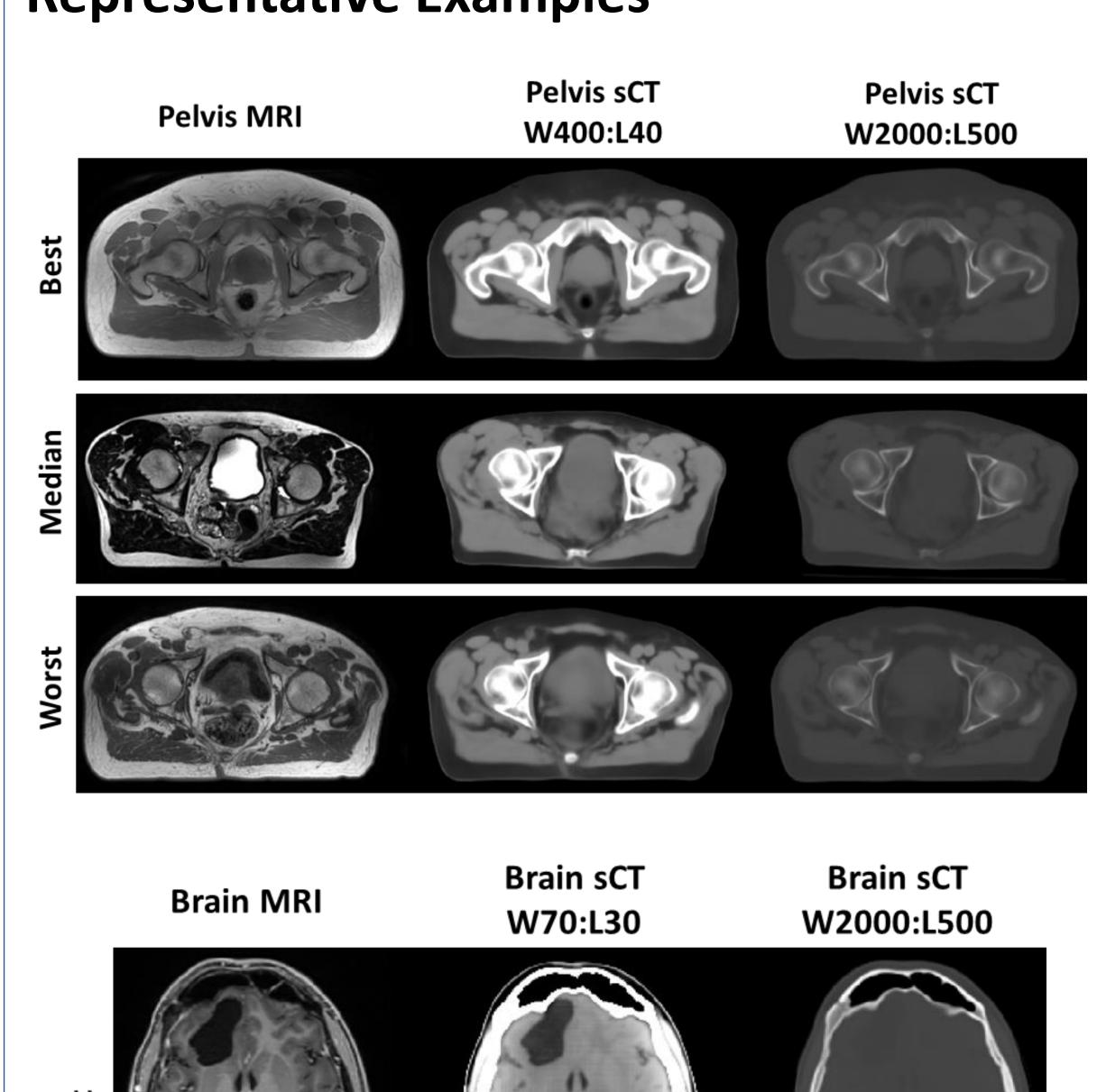
- Loss function: $\mathcal{L}(G,D) = \mathcal{L}_{GAN}(G,D) + \lambda \mathcal{L}_{R}(G)$
 - \mathcal{L}_{GAN} is a least-square loss term
 - \mathcal{L}_R is a L1 loss term($\lambda = 50$)
- 2500 iter. | 300 batches/iter. | batch size = 16
- Data augmentation:
 - geometric (MR and CT)
 - intensity (MR-only)

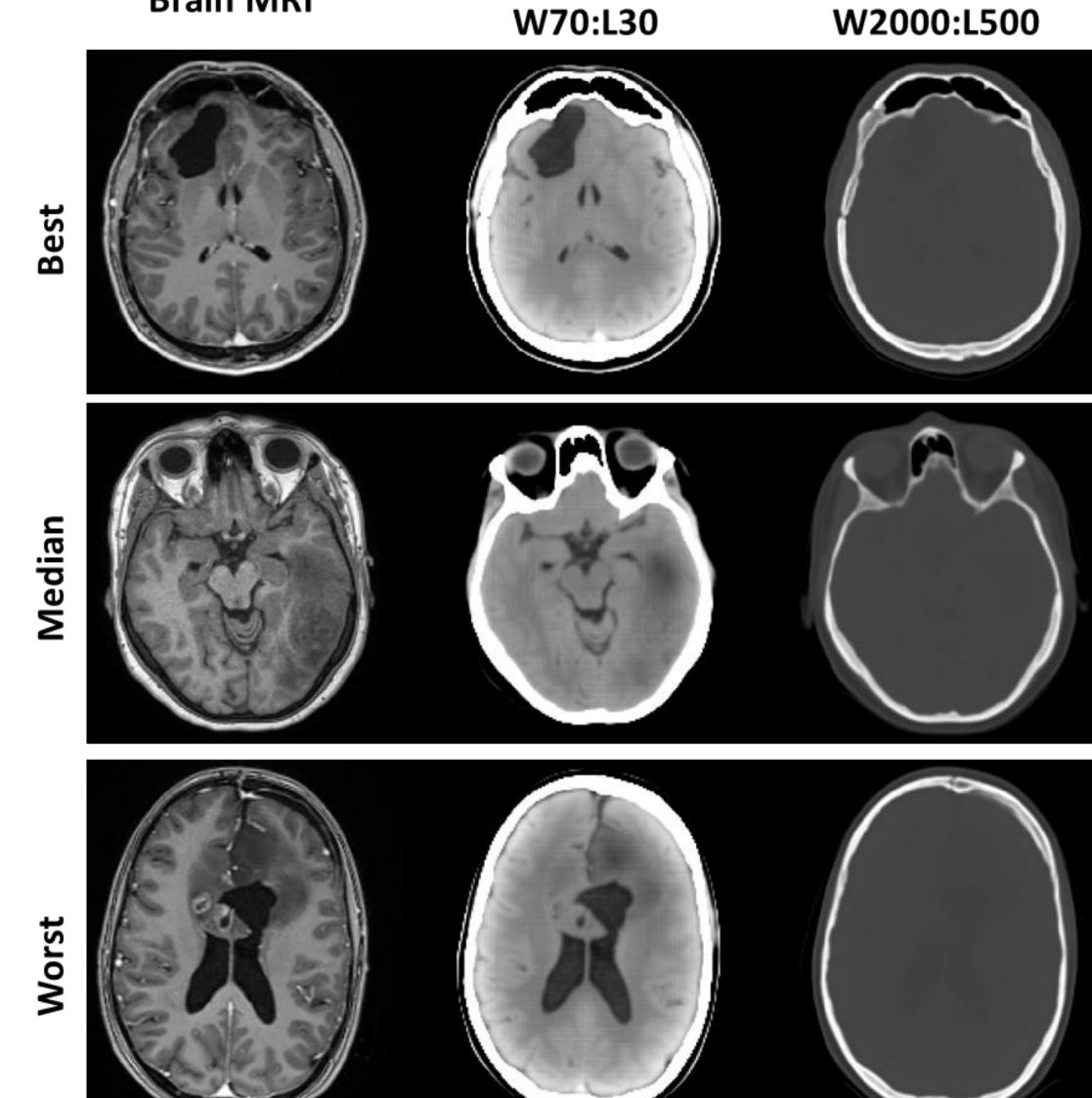
Less Staircase Effects

sCT: 5-Channels Pix2Pix (2.5D)

Full List of Hyperparameters

Hyperparameter	Description	Recommended value		
\mathcal{L}_{GAN}	Type of adversarial loss function to use (ei- ther Classic, Least Squares or Hinge)	Least Squares		
Learning rate	Learning rate for the generator (G) and dis- criminator(D). The learning rate will line- arly decrease to zero starting when half the number of iterations has been completed.	G: 1e-4 D: 5e-5		
Num filters	Number of filters per layer in the generator (G) and discriminator (D)	G: 64,128,256,512 D: 64,128, 256,512,512		
Num disc updates	Number of discriminator updates per generator update	2		
Spectral norm	Specify if spectral normalization layers are used in both the discriminator and generator networks	True		
L1 weight (λ)	Weight of L1 loss term	50		
Voxel size	Voxel size in mm	Brain: 1x1x1 mm Pelvis: 1x1x2.5 mm		
Sample size	The size of a sample (in voxels) used during training and inference. For a 2D network, the 3 rd dimension is the channel dimension (c.f. Section 2.4)	192x192x5		
Batch size	Number of samples per batch	16		
Num batches per it- eration	Number of batches per iteration	300		
Num iterations	Total number of iterations	2500		
Data augmentation	Option to turn on data augmentation	True		


Data **Challenge Data (3 centers) Tumor Site** Paired Data* Training Validation **Test** CT + MR (T1w or T2w)180 30 60 Pelvis


180

Brain

Representative Examples

CT + MR (T1w)

Test Results

Final Results of the Test Phase

	MAE	PSNR	SSIM	DVH	Gamma	Dose MAE	DVH	Gamma	Dose MAE
				(photon)	(photon)	(photon)	(proton)	(proton)	(proton)
Mean	62.76	28.80	0.875	0.0286	98.15	0.00398	0.227	97.27	0.0332
Std Dev	13.06	1.60	0.030	0.0525	4.21	0.00359	0.276	2.50	0.0220
Min	29.59	24.56	0.784	0.0013	78.12	0.00039	0.007	88.33	0.0060
25pc	54.10	27.80	0.861	0.0091	99.24	0.00193	0.040	96.01	0.0173
50pc	60.82	28.81	0.882	0.0156	99.88	0.00280	0.104	97.85	0.0292
75pc	70.73	29.74	0.891	0.0313	99.99	0.00493	0.256	99.25	0.0409
Max	108.64	32.52	0.974	0.4278	100.00	0.02759	1.295	100.00	0.1333

Observations:

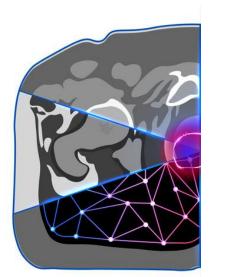
- Image similarity metrics are comparable to those of the validation phase (no degradation)
- High Std Dev observed in dosimetric evaluation results due to outlier cases (to be further investigated)

Conclusion

Pix2Pix remains a good baseline model for MRto-sCT translation

Inference time is important for online workflow

- 20 sec for brain model
- 30 sec for pelvis model


Model ensembling

- Small effect on image similarity metric
- Inference time increases linearly

Other considerations/Future work

- Improving image registration
- Gas pockets in pelvis

^{*}Rigidly aligned CT and MR