
In this paper, we developed a Diffusion-based modeling for generating high-
quality synthetic CT data given provided MR data. For the balance between 
computation and time consumption and data quality, we proposed two 
following refinement networks that can largely reduce inference time of 
Diffusion model and improve data quality by further denoising and mean 
shifting. For future work, we will explore more power of sampling methods 
and conditional Diffusion model structures that better utilizes MR information 
for faster and better generation.

Conclusions

• Diffusion Model vs. GAN and U-net variants. Diffusion models are known 
to suffer less from mode collapse, which is very common in GAN models, 
which means Diffusion model can generate a large diversity of samples but 
this can also lead to unappreciated randomness and larger variance, 
especially in medical image processing. Compared to various U-net variants, 
the Diffusion models also have larger diversity on generation. This can be 
seen in the Challenge results as shown below, where our best prediction on 
CT data surpass all other teams’ best prediction, but also generally larger 
standard deviation on predictions.

• Sampling strategy. In our case, limited by Diffusion model’s nature of much 
longer inference time, sampling phase are every bit as important as the 
training phase. Original DDPM won’t survive in any challenge that has strict 
running time limit. DDIM is chosen to accelerate the sampling process, but 
which still cannot completely denoise the image and shift the mean of 
samples from random Gaussian zero mean to real CT mean. Better 
sampling strategies could lead to better generation, we leave which for 
future exploration. An example of DDIM sampling with only 20 steps is 
shown below.
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Introduction
• To obtain the CT images and corresponding tissue attenuation information 

for dose calculation and treatment planning, additional radiation to the 
patients are usually inevitable.

• The key of utilizing CT for dose calculation is the tissue attenuation 
information, which is not directly available on MR data and the superb 
soft-tissue contrast of MR is not enough.

• Developing MRI-only RT can not only reduce the radiation to patients, but 
also help to simplify and speed up the workflow for disease cure, which 
requires highly effective modeling for generating CT given MR data.

• Our work integrates the diffusion-based model for the synthesized CT data 
generation, which can generate highly accurate and realistic CT based on 
MR.

• We equip the diffusion model with additional two refinement networks for 
better smoothness and less artifacts due to the limitation of computation 
in this challenge.
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• Variational Diffusion Model. The Variational Diffusion Model can be simply 
viewed as a Markovian Hierarchical Variational Autoencoder with 
additional constraints: (1) The latent space is not learned but instead it’s 
pre-defined as a perturbed image space with Gaussian noise, which means 
each latent space has the same dimension as the initial image space; (2) 
The final latent space after 𝑇 timesteps is theoretically a standard Gaussian 
space.

• Workflow. As shown below, each MRI slice is padded and re-sampled to 
the size of 256 × 256 firstly, and then the diffusion model with slice-wise 
consistency constraint is employed to generate the sCT images. After that, 
the generated sCT images are re-sampled to the same shape as the original 
MRI images. Finally, two vanilla U-Net models are employed to remove the 
noise and artifacts.

• Refinement Networks. The refinement networks are not required for 
generating high-quality synthesized CT data. Without computation and 
time limitations, we can follow the whole reverse process of adding 
Gaussian noise and generate no-noise and no-artifact data. But to 
accommodate the diffusion model, which is relatively more expensive to 
GAN, we only sample a few steps and deploy refinement networks for 
further denoising.

• DDIM Sampling. Even though a diffusion model is trained with 𝑇 timesteps 
and hyperparameters ഥα and തβ, we can consider it being trained with fewer 
timesteps 𝑡 with another set of hyperparameters ഥα′ and ഥβ′. Therefore, with 
a well-trained diffusion model, we can expedite its sampling process to only 
𝑡 steps over 𝑇 steps, where 𝑇 is much larger than 𝑡.

Methods

Method MAE↓ PSNR↑ DDIM↑

MSEP

(Rank 1)

Max 107.73 33.41 0.9472

Min 36.67 24.63 0.7852

Std 13.40 1.78 0.0288

Conditional

GAN

(Rank 4)

Max 108.64 35.52 0.9743

Min 29.59 24.55 0.7841

Std 13.06 1.60 0.0297

Ours

(Rank 8)

Max 113.2 37.57 0.9849

Min 27.10 23.95 0.7715

Std 14.40 1.74 0.0339
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